Simulating sequence datasets

Simulating sequences is very straightforward in BioNumPy. Since a sequence arrays have underlying numeric representations that are easy to relate to, one can directly simulate such an underlying representation using any numeric simulation procedure. In addition, bionumpy provides convenience functions that allows to directly simulate sequence data without having to think about any underlying numeric representation. This is the focus of the current tutorial. The function simulate_sequences is an easy way to simulate a set of sequences, by simply specifying a desired alphabet and a dictionary with desired sequence ids as keys and the desired length of each such sequence as value (here simulating 20 sequences with length 10..30):

>>> import numpy as np
>>> rng = np.random.default_rng(seed=1)
>>> from bionumpy.simulate import simulate_sequences
>>> from bionumpy.sequence import match_string
>>> named_seqs = simulate_sequences('ACGT', {f's{i}':10+i for i in range(20)}, rng)
>>> named_seqs
SequenceEntry with 20 entries
                     name                 sequence
                       s0               CGTTAATTAC
                       s1              TCCTCCGGAAT
                       s2             TTGTCCTACACT
                       s3            ACCTAGCATACCC
                       s4           ATGTAGCGTCGACT
                       s5          CGCACGCTCGTTCAG
                       s6         GTCCACGTTAGTCCTG
                       s7        GGGTTAAGTAGTTTAGT
                       s8       CACAATGTTTCCGCTATG
                       s9      CGCTTCCAGGTTTTTAACC

One can now easily do a variety of analyses on these simulated sequences, e.g. compute the GC content per simulated sequence:

>>> seqs = named_seqs.sequence
>>> gc_content_per_seq = np.mean((seqs=='C')|(seqs=='G'), axis=1)
>>> gc_content_per_seq
array([0.3       , 0.54545455, 0.41666667, 0.53846154, 0.5       ,
       0.66666667, 0.5625    , 0.35294118, 0.44444444, 0.47368421,
       0.5       , 0.38095238, 0.68181818, 0.30434783, 0.66666667,
       0.52      , 0.46153846, 0.44444444, 0.53571429, 0.51724138])

If desired, such computed values per sequence can easily be added back as an additional column of the bionumpy data structure:

>>> named_seqs = named_seqs.add_fields({'gc':gc_content_per_seq}, {'gc':float})
>>> named_seqs
DynamicSequenceEntry with 20 entries
                     name                 sequence                       gc
                       s0               CGTTAATTAC                      0.3
                       s1              TCCTCCGGAAT       0.5454545454545454
                       s2             TTGTCCTACACT       0.4166666666666667
                       s3            ACCTAGCATACCC       0.5384615384615384
                       s4           ATGTAGCGTCGACT                      0.5
                       s5          CGCACGCTCGTTCAG       0.6666666666666666
                       s6         GTCCACGTTAGTCCTG                   0.5625
                       s7        GGGTTAAGTAGTTTAGT      0.35294117647058826
                       s8       CACAATGTTTCCGCTATG       0.4444444444444444
                       s9      CGCTTCCAGGTTTTTAACC      0.47368421052631576
We can also easily apply a variety of built-in bionumpy functionality on our simulated sequences:
>>> ac_hits = match_string(seqs, "AC")
>>> ac_hit_sums = np.sum(ac_hits,axis=1)
>>> ac_hit_sums
array([1, 0, 2, 2, 1, 1, 1, 0, 1, 1, 1, 1, 2, 1, 2, 2, 2, 0, 1, 1])
>>> named_seqs = named_seqs.add_fields({'ac_hits':ac_hit_sums}, {'ac_hits':int})
>>> named_seqs
DynamicSequenceEntry with 20 entries
                     name                 sequence                       gc                  ac_hits
                       s0               CGTTAATTAC                      0.3                        1
                       s1              TCCTCCGGAAT       0.5454545454545454                        0
                       s2             TTGTCCTACACT       0.4166666666666667                        2
                       s3            ACCTAGCATACCC       0.5384615384615384                        2
                       s4           ATGTAGCGTCGACT                      0.5                        1
                       s5          CGCACGCTCGTTCAG       0.6666666666666666                        1
                       s6         GTCCACGTTAGTCCTG                   0.5625                        1
                       s7        GGGTTAAGTAGTTTAGT      0.35294117647058826                        0
                       s8       CACAATGTTTCCGCTATG       0.4444444444444444                        1
                       s9      CGCTTCCAGGTTTTTAACC      0.47368421052631576                        1