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Benchmarks

We compare the speed of BioNumPy against other existing Python packages and commonly used
non-Python tools on a set of typical bioinformatics tasks. As seen in Figure 1, we �nd that BioNumPy is
generally considerably faster than vanilla Python solutions, as well as the commonly used Python
packages BioPython and Biotite, which mostly rely on Python for-loops to perform operations on
datasets. On problems where designated e�cient bioinformatics tools are widely used (intersection of
BED-�les, kmer counting and VCF operations), we �nd that BioNumPy is close to, or as e�cient as,
tools written in C/C++ (BEDTools [1], Jelly�sh [2] and BCFTools [3]). A Snakemake pipeline for
reproducing the results can be found at
https://github.com/bionumpy/bionumpy/tree/main/benchmarks, along with an open invitation to
expand the benchmark with additional tools and cases.

https://github.com/bionumpy/bionumpy/tree/main/benchmarks




Figure 1:  Benchmarking BioNumPy against other tools and methods on various typical bioinformatics tasks.

Reproducing a machine learning benchmark using BioNumPy

To show how BioNumPy can be used to easily process and parse various biology data formats, we
used BioNumPy to reproduce a recently published benchmark of a machine learning method [4]. In
the original work, the authors are using a combination of custom Python code and common
bioinformatics tools (such as BCFTools [3]) to extract sequences around the transcription start sites of
genes, which are used as input to a machine learning method. This preprocessing step takes as input
various �le formats (GTF, FASTA, VCF). Due to the external dependencies and combination of scripts
that need to be manually run and tied together, the current code is not runnable and the results are
not directly reproducible.

We have forked the original repository and replaced all this code with a single, readable Python script
that uses BioNumPy to preprocess and combine the various data �les. We believe this shows that
BioNumPy can be used to easily and cleanly integrate various biological datasets where it before was
common to use a combination of scripts and tools, which easily leads to non-reproducible code.

In addition to being reproducible, the BioNumPy code enables several advantages. The code is
reusable for other settings. It is straightforward to run the Python script with another set of genes, or
another window size. It is relatively easy to adapt the script to be more robust. Some transcription
start site windows might fall outside of the chromosome boundaries or include ’N’s, both of which
would break the current code. However, it is straightforward to handle this in the single Python script.
Lastly, it is possible to try di�erent variations of the script to see if it improves the performance. For
instance, the current scripts return all the sequences on the forward strand, but it might be better to
return the reverse complement for genes that are on the negative strand. Lastly, one can use the full
range of modularization in Python. From functions and classes to modules and published packages
installable by PiP. This makes it easier to reuse the code in other similar projects. In conclusion,
BioNumPy enables e�cient scripts for handling genomic data that are reproducible, reusable,
adaptable, and modularizable.

Our fork is available at https://github.com/knutdrand/enformer_assesment_reproduction.

BioNumPy Implementation details

BioNumPy internally stores sequence data (e.g. nucleotides or amino acids) as numeric values,
allowing the use of standard NumPy arrays for data representation and processing. A key way
BioNumpy achieves high performance is by storing multiple data entries in shared NumPy arrays. To
illustrate the bene�t of this approach, consider the example where we want to count the number of
Gs and Cs in a large set of DNA sequences. Existing Python packages like BioPython and Biotite, do
this by iterating over the sequences using Python for-loops, which is slow when the number of
sequences is large. BioNumPy, however, stores all sequences in only one or a few shared NumPy
arrays (Figure 3a), meaning that vectorized NumPy operations can be used to do the counting in a
fraction of the time.

Storing multiple elements in shared arrays is trivial if the elements all have the same size, since a
matrix representation can be used. However, for biological data, it is common that data elements vary
in size. For instance, sequences in FASTA �les are rarely all of the exact same size. BioNumPy uses the
RaggedArray data structure from the npstructures package
(https://github.com/bionumpy/npstructures, developed in tandem with BioNumPy) to tackle this
problem (Figure 2). The RaggedArray can be seen as a matrix where rows can have di�erent lengths.

https://github.com/knutdrand/enformer_assesment_reproduction
https://github.com/bionumpy/npstructures


The npstructures RaggedArray implementation is compatible with most common NumPy operations,
like indexing (Figure 2 b), vectorized operations (Figure 2 c), and reductions (Figure 2 d). As far as
possible, objects in BioNumPy follow the array interoperability protocols de�ned by NumPy
(https://numpy.org/doc/stable/user/basics.interoperability.html)

Figure 2:  Overview of the RaggedArray and EncodedRaggedArray data structures. A RaggedArray is similar to a
NumPy array/matrix but can represent a matrix consisting of rows with varying lengths (a). This makes it able to
represent data with varying lengths e�ciently in a shared data structure. A RaggedArray supports many of the same
operations as NumPy arrays, such as indexing (b), vectorization (c) and reduction (d). These are implemented solely
using NumPy, relying on functions like ufunc.accumulate, ufunc.reduceat and indexing. This means that most
operations are close to equivalent operations on NumPy matrices, with a few exceptions like column reductions. An
EncodedRaggedArray is a RaggedArray that supports storing and operating on non-numeric data (e.g. DNA sequences)
by encoding the data and keeping track of the encoding (e). An EncodedRaggedArray supports the same operations as
RaggedArrays (f). This �gure is an adopted and modi�ed version of Figure 1 in [5] and is licensed under a Creative
Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

BioNumPy has been developed following the principles of continuous integration and distribution.
The codebase is thoroughly and automatically tested through an extensive collection of unit tests,
application tests, integration tests and property-based tests [6]. New code changes are automatically
benchmarked and tested before being automatically published, ensuring that updates can be
frequent while high code quality is maintained. This work�ow makes it safe and easy to allow

https://numpy.org/doc/stable/user/basics.interoperability.html
http://creativecommons.org/licenses/by/4.0/


contributions from new contributors, which is important for longevity and community adoption of the
package.
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